

ADVANCE INFORMATION

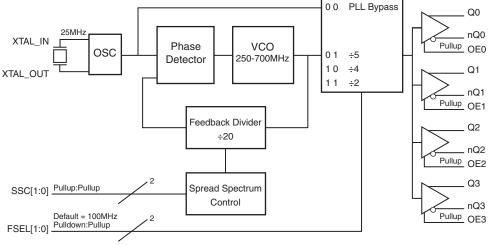
CRYSTAL-TO-MLVDS PCI EXPRESS™ CLOCK SYNTHESIZER W/SPREAD SPECTRUM

ICS845204

General Description

The ICS845204 is a 4 output PCI Express clock synthesizer optimized to generate low jitter PCI Express[™] reference clocks with or without spread spectrum modulation and is a member of the HiPerClockS[™] family of high performance clock

solutions from IDT. Spread type and amount can be configured via the SSC control pins. Using a 25MHz, 18pF parallel resonant crystal, the device will generate M-LVDS clocks at either 25MHz, 100MHz, 125MHz or 250MHz. The ICS845204 uses a low jitter VCO that easily meets PCI Express jitter requirements and is packaged in a 32-pin VFQFN package.


Pin Assignment

0 29 28 OE0 24 **n**c 23 🗋 nc VDD [2 nQ3 [3 22 GND 🗆 Q2 O3 [21 $20 \square nQ2$ nc [□SSC1 6 19 FSEL0 [18 🗆 nc nc **Г** 8 17 10 11 12 13 14 15 16 GND SSC0 FSEL1 OE3 Z. OUT VDD OE2 XTAL XTAL ICS845204 32 Lead VFQFN 5mm x 5mm x 0.925mm package body K Package **Top View**

Features

- Four differential spread spectrum clock outputs
- Each output can be individually disabled by separate output-enable inputs
- Crystal oscillator interface designed for 18pF, 25MHz parallel resonant crystal
- Supports the following output frequencies: 25MHz, 100MHz, 125MHz or 250MHz
- VCO range: 250MHz 700MHz
- Supports SSC downspread at 0.05% and -0.75%, centerspread at $\pm 0.25\%$ and no spread options
- Cycle-to-cycle jitter: 50ps (maximum) design target
- Period jitter, RMS: TBD
- Full 3.3V output supply mode
- 0°C to 70°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

The Advance Information presented herein represents a product that is developmental or prototype. The noted characteristics are design targets. Integrated Device Technologies, Inc. (IDT) reserves the right to change any circuitry or specifications without notice.

Table 1. Pin Descriptions

Number	Name	Ţ	уре	Description
1	OE0	Input	Pullup	Output enable pin for Q0/nQ0 outputs. Logic High, outputs are enabled. Logic LOW, outputs are in Hi-Z. LVCMOS/LVTTL interface levels.
2, 11	V _{DD}	Power		Core supply pins.
3, 4	nQ3, Q3	Output		Differential output pair. M-LVDS interface levels.
5	V _{DDO}	Power		Output supply pin.
6, 8, 18, 23, 24, 27	nc	Unused		No connect.
7	FSEL0	Input	Pullup	Output frequency select pins. See Table 3A. LVCMOS/LVTTL interface levels.
9	FSEL1	Input	Pulldown	Output frequency select pin. See Table 3A. LVCMOS/LVTTL interface levels.
10, 19	SSC0, SSC1	Input	Pullup	Spread spectrum control pins. See Table 3B. LVCMOS/LVTTL interface levels.
12	OE3	Input	Pullup	Output enable pin for Q3/nQ3 outputs. Logic High, outputs are enabled. Logic LOW, outputs are in Hi-Z. LVCMOS/LVTTL interface levels.
13, 14	XTAL_IN XTAL_OUT	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
15	OE2	Input	Pullup	Output enable pin for Q2/nQ2 outputs. Logic High, outputs are enabled. Logic LOW, outputs are in Hi-Z. LVCMOS/LVTTL interface levels.
16, 17, 22, 30	GND	Power		Power supply ground.
20, 21	nQ2, Q2	Output		Differential output pair. M-LVDS interface levels.
25, 26	nQ1, Q1	Output		Differential output pair. M-LVDS interface levels.
28	V _{DDA}	Power		Analog supply pin.
29	OE1	Input	Pullup	Output enable pin for Q1/nQ1 outputs. Logic High, outputs are enabled. Logic LOW, outputs are in Hi-Z. LVCMOS/LVTTL interface levels.
31, 32	nQ0, Q0	Output		Differential output pair. M-LVDS interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. F_SEL[1:0] Function Table

Inp	uts	Outputs
FSEL1	FSEL0	Q[0:3]/nQ[0:3]
0	0	PLL Bypass (25MHz)
0	1	100MHz (default)
1	0	125MHz
1	1	250MHz

Table 3B. SSC[1:0] Function Table

Inp	outs	Spread%
SSC1	SSC0	
0	0	Center ± -0.25
0	1	Down -0.5
1	0	Down -0.75
1	1	No Spread (default)

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, I _O Continuos Current Surge Current	10mA 15mA	
Package Thermal Impedance, θ_{JA}	42.4°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		$V_{DD} - I_{DDA}^* 10\Omega$	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			TBD		mA
I _{DDA}	Analog Supply Current			TBD		mA
I _{DDO}	Power Supply Current			TBD		mA

Table 4B. LVCMOS/LVTTL DC Characteristics, V_{DD} = V_{DDO} = 3.3V \pm 5%, T_{A} = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Volt	age		-0.3		0.8	V
Input I _{IH} High Cu	laput	F_SEL1	$V_{DD} = V_{IN} = 3.465V$			150	μA
	High Current	SSC0, SSC1, FSEL0, OE0:OE3	$V_{DD} = V_{IN} = 3.465V$			5	μA
	laput	F_SEL1	$V_{DD} = 3.465 V, V_{IN} = 0 V$	-5			μA
1	Input Low Current	SSC0, SSC1, FSEL0, OE0:OE3	$V_{DD} = 3.465$ V, $V_{IN} = 0$ V	-150			μA

Table 4C. M-LVDS DC Characteristics, V_{DD} = V_{DDO} = 3.3V \pm 5%, T_{A} = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		480		650	mV
ΔV_{OD}	V _{OD} Magnitude Change			50		mV
V _{OS}	Offset Voltage		0.30		2.10	V
ΔV_{OS}	V _{OS} Magnitude Change			50		mV
I _{SC}	Output Short Circuit Current				43	mA

Table 5. Crystal Characteristics

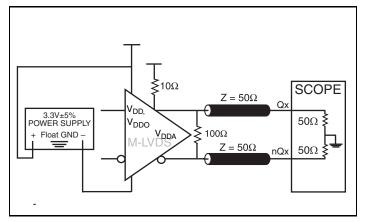
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				TBD	mW

AC Electrical Characteristics

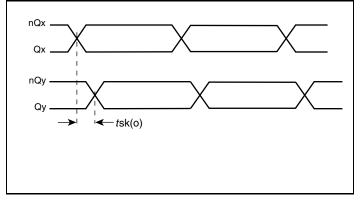
Table 6. AC Characteristics,	$V_{DD} =$	V _{DDO} = 3.3\	/ ± 5%,	, T _A = 0	0°C to 70°
------------------------------	------------	-------------------------	---------	----------------------	------------

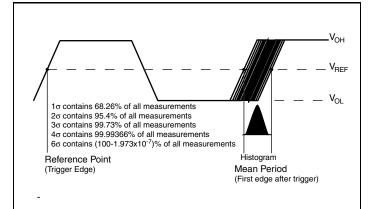
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
				25		MHz
f _{OUT}	Output Frequency			100		MHz
				125		MHz
		25MHz, Integration Range: 12kHz – 20MHz		TBD		ps
	Period Jitter, Random	100MHz, Integration Range: 12kHz – 20MHz		TBD		ps
<i>t</i> jit(per)		125MHz, Integration Range: 12kHz – 20MHz		TBD		ps
		250MHz, Integration Range: 12kHz – 20MHz		TBD		ps
		25MHz			50	ps
£;;(~~)	Cycle-to-Cycle Jitter; NOTE 1, 2	100MHz			50	ps
<i>t</i> jit(cc)		125MHz			50	ps
		250MHz			50	ps
<i>t</i> sk(o)	Output Skew; NOTE 2, 3			TBD		ps
F _{XTAL}	Crystal Input Range: NOTE 1			25		MHz
F _M	SSC Modulation Frequency; NOTE 4			TBD		kHz
F _{MF}	SSC Modulation Factor; NOTE 4			TBD		%
SSC _{RED}	Spectral Reduction			TBD		dB
t _{STABLE}	Power-up Stable Clock Output				10	ms
t _R / t _F	Output Rise/Fall Time	20% to 80%		TBD		ps
odc	Output Duty Cycle			50		%

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

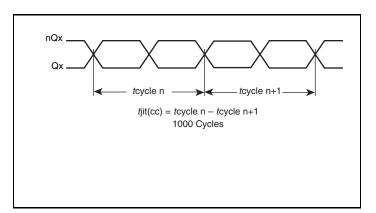

NOTE 2: Only valid within the VCO operating range.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

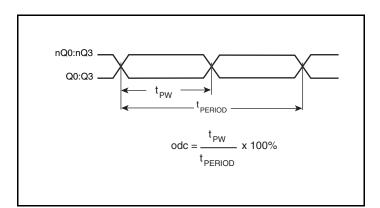

Measured at the output differential cross points.

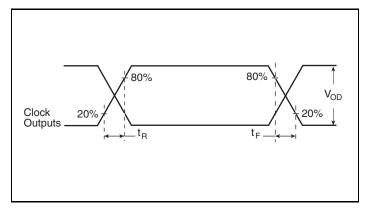

NOTE 4: Spread Spectrum clocking enabled.

Parameter Measurement Information



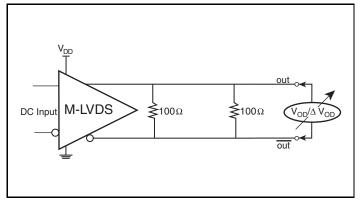
3.3V LVDS Output Load AC Test Circuit

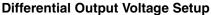




Cycle-to-Cycle Jitter

Output Duty Cycle/Pulse Width/Period


Output Skew


Output Rise/Fall Time

Parameter Measurement Information, continued

Offset Voltage Setup

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS845204 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a 10Ω resistor along with a 10μ F and a 0.01μ F bypass capacitor should be connected to each V_{DDA} pin.

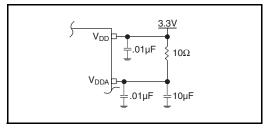


Figure 1. Power Supply Filtering

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

M-LVDS Outputs

All unused M-LVDS output pairs can be either left floating or terminated with 100 Ω across. If they are left floating, there should be no trace attached.

Crystal Input Interface

The ICS845204 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

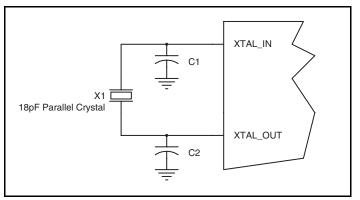


Figure 2. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3.* The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

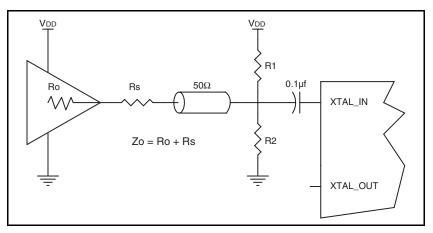
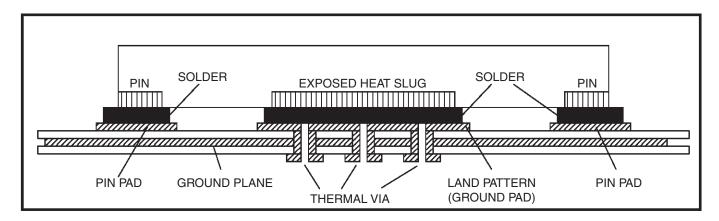



Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

3.3V M-LVDS Driver Termination

A general M-LVDS interface is shown in *Figure 5* In a 100 Ω differential transmission line environment, M-LVDS drivers require a matched load termination of 100 Ω across near the receiver input.

For a multiple M-LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

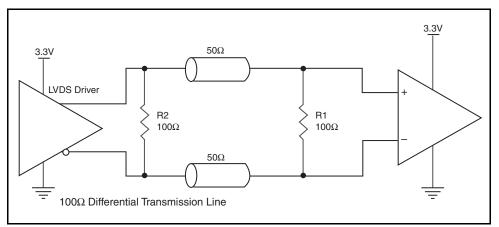
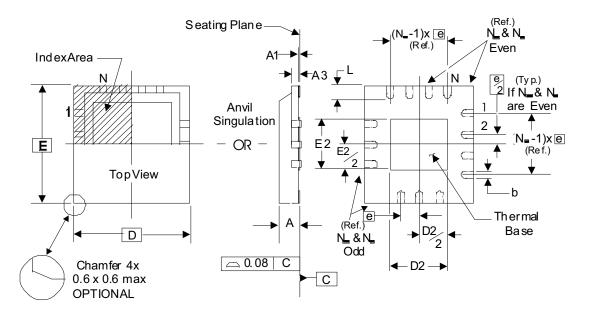


Figure 5. Typical M-LVDS Driver Termination

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 32Lead VFQFN


θ_{JA} vs. Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	42.4°C/W	37.0°C/W	33.2°C/W		

Transistor Count

The transistor count for ICS845204 is: 3749

Package Outline and Package Dimension

Package Outline - K Suffix for 32 Lead VFQFN

NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout

of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 8 below.

JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters						
Symbol	Minimum	Nominal	Maximum			
N	32					
Α	0.80		1.00			
A1	0		0.05			
A3	0.25 Ref.					
b	0.18	0.25	0.30			
N _D & N _E			8			
D & E	5.00 Basic					
D2 & E2	3.0		3.3			
е	0.50 Basic					
L	0.30	0.40	0.50			

Table 8. Package Dimensions

Reference Document: JEDEC Publication 95, MO-220

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
845204AK	TBD	32 Lead VFQFN	Tray	0°C to 70°C
845204AKT	TBD	32 Lead VFQFN	2500 Tape & Reel	0°C to 70°C
845204AKLF	ICS845204AL	"Lead-Free" 32 Lead VFQFN	Tray	0°C to 70°C
845204AKLFT	ICS845204AL	"Lead-Free" 32 Lead VFQFN	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA